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Abstract. The vacuum state of SU(3) gluodynamics at high temperature is investigated. A consistent
approach including the calculation of the spontaneously generated constant chromomagnetic isotopic H3

and hypercharge H8 fields and the polarization operator of charged gluons in this background is applied.
It is shown within the effective potential, taking into consideration the one-loop plus daisy diagrams, that
the specific values of the fields yield a global minimum to the free energy. The spectrum of the transversal
charged modes is stable at high temperature due to the calculated gluon magnetic mass which accounts for
the fields. This leads to stable chromomagnetic fields in the deconfinement phase of QCD. A comparison
with results of other approaches is made.

1 Introduction

The deconfinement phase transition remains the most topi-
cal problem of QCD at finite temperature. Nowadays a gen-
eral belief is that the formation of the magnetic monopole
condensate at low temperature and its evaporation at high
temperature are responsible for this phenomenon (see, for
instance, [1–5] and references therein). This scenario has
been investigated both on a lattice [1–4] and in a contin-
uum quantum field theory [5]. The present day status of
this problem is characterized by the fact that the results
obtained by the latter method are in agreement with that of
the former one and they complement each other, although
some discrepancies exist. The most important discrepancy
concerns the properties of the high-temperature phase. As
is well known from lattice calculations, due to asymptotic
freedom at high temperature the deconfinement phase is to
be a gas of free quarks and gluons: a quark–gluon plasma.
No other macroscopic parameters except temperature are
expected. However, in the continuum calculations in [6–9]
the generation of a classical chromomagnetic field of order
gH ∼ g4T 2 was observed. This spontaneously created field
is a reflection of the infrared dynamics of the non-Abelian
gauge fields at finite temperature. In [6,8] the creation of the
field was considered. The field stabilization has been inves-
tigated for SU(2) gluodynamics. Two possible mechanisms
were considered, one due to the electrostatic potential (so-
called the A0 condensate) [7] and one due to the radiation
corrections to the charged gluon spectrum [10]. Accord-
ing to the picture derived in these papers the vacuum at
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high temperature is to be a stable magnetized state. The
noted discrepancy as well as some properties of the vac-
uum at high temperature have been discussed recently by
Meisinger and Ogilvie [11]. To eliminate the classical field
in the deconfinement phase these authors have introduced
a gluon magnetic mass on heuristic grounds. Then they
observed that to have a zero field at high temperature the
value of the magnetic mass substituted into the one-loop
effective potential (EP) must be of order ∼ g2T . However,
the spontaneous creation of chromomagnetic fields is re-
lated with the infrared properties of non-Abelian gauge
fields [8], which should be taken into consideration. This
important aspect of the gauge field dynamics at high tem-
perature needs more detailed investigations. Moreover, to
find a consistent picture at high temperature the correla-
tion corrections accounting for long distance effects should
be calculated [12].

In the present paper the restored phase of QCD at high
temperature is investigated within the approach consist-
ing of two-stage calculations. First, the EP of the Abelian
constant chromomagnetic fields – the isotopic one, H3, and
the hypercharge one, H8 – taking into consideration the
one-loop and the daisy diagrams, which include the gluon
magnetic mass insertions, is computed, and the field config-
uration, which is spontaneously generated, is determined.
This potential is real due to the daisies of the charged glu-
ons, which cancel the imaginary part entering the one-loop
part of the EP. As it occurred, a specific combination of
both fields is formed. Second, the one-loop polarization
operator (PO) of charged gluons in these external fields is
calculated. It is averaged over the gluon tree-level states, in
order to find the radiation corrections to the spectrum. In
this way the Debye’s and magnetic masses of gluons are de-
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rived. Then the vacuum magnetic field strengths are used
to check whether or not the charged gluon spectrum (and
therefore the magnetized vacuum) at finite temperature
is stable. As is found, this is the case and the non-trivial
vacuum is favorable at high temperature in a wide interval
of temperature above the deconfinement transition tem-
perature Td. Hence we come to the conclusion that the
scenario with the spontaneously magnetized vacuum re-
sults is a consistent picture. The higher loop corrections
can be included perturbatively.

This paper is organized as follows. In Sect. 2 the charged
sector of the SUc(3) gluodynamics is introduced. In Sect. 3
the generation of the external chromomagnetic fields is
considered and the field strengths are derived. In Sect. 4
we calculate the PO in the external Abelian chromomag-
netic fields at finite temperature and carry out the high-
temperature expansion of the one-loop radiation correc-
tions to the Landau levels. The last section is devoted to
a discussion of the results obtained and to possible ap-
plications. In particular, a gauge invariance is discussed
in detail.

2 The model

The Lagrangian of SU(3) gluodynamics reads [13]

L = −1
4
F a

µνF a
µν + Lgf + Lgh, (1)

where F a
µν = ∂µAa

ν−∂νAa
µ−gfabcAa

µAa
ν is the field strength

tensor, Aa
µ is the potential of the gluon field, the fabc are

the SUc(3) structure constants, a = 1, . . . , 8. The metric
is chosen to be Euclidian in order to consider the theory
at T �= 0 in the imaginary time formalism. The external
chromomagnetic field is introduced by dividing the gluon
field Aa

µ into the sum of the classic background field Ba
µ

and the quantum field Qa
µ,

Aa
µ = Ba

µ + Qa
µ. (2)

We choose the external potential in the formBa
µ = δa3B3µ+

δa8B8µ, where B3µ = H3δµ2x1 and B8µ = H8δµ2x1 corre-
spond to constant chromomagnetic fields directed along
the third axis in the Euclidean space and a = 3 and
a = 8 in the color SUc(3)-space, respectively: F a ext

µν =
δa3F3µν + δa8F8µν , Fc12 = −Fc21 = Hc, c = 3, 8. The
gauge fixing term in (1) is

Lgf = −1
2
(∂µQa

µ + gfabcBb
µQc

µ)2, (3)

and Lgh represents the ghost Lagrangian. The components
Qa

µ with a = 1, 2, 4, 5, 6, 7 correspond to the charged gluons.
It is convenient to introduce the “charged basis” of the fields
Qa

µ (a = 1, 2, 4, 5, 6, 7) by the expressions

W±
1µ =

1√
2
(Q1

µ ± iQ2
µ), W±

2µ =
1√
2
(Q4

µ ± iQ5
µ),

W±
3µ =

1√
2
(Q6

µ ± iQ7
µ). (4)

After simple algebra one obtains the Lagrangian of the
charged gluons in the form

Lch.gl.

=
3∑

r=1

(
−1

2
W+

rµνW−
rµν − (D∗

µW+
rµ)(DνW−

rν)

−1
2
crg

2W+
rµW−

rνW+
rλW−

rρΓµνλρ

)
+ ig(F3µν + Q3

µν)W+
1µW−

1ν + igQ3
µ(W+

1ν(∂µW−
1ν − ∂νW−

1µ)

−(h.c.))

+ i

√
3
2
g

(
λ+F8µν + Q8

µν +
1√
6
Q3

µν

)
W+

2µW−
2ν

+ i

√
3
2
g

(
Q8

µ +
1√
6
Q3

µ

)
(W+

2ν(∂µW−
2ν − ∂νW−

2µ)

−(h.c.))

+ i

√
3
2
g

(
λ−F8µν + Q8

µν − 1√
6
Q3

µν

)
W+

3µW−
3ν

+ i

√
3
2
g

(
Q8

µ − 1√
6
Q3

µ

)
(W+

3ν(∂µW−
3ν − ∂νW−

3µ)

−(h.c.)) + Lgh, (5)

where W+
rµν = D∗

rµW+
rν − D∗

rνW+
rµ, W−

rµν = DrµW−
rν −

DrνW−
rµ; Dr=1 µ = ∂µ+igB3µ, Dr=2,3 µ = ∂µ+i

√
3
2λ±gB8µ

are covariant derivatives, Γµνλρ = δµνδλρ − δµλδνρ,

λ± = 1 ± 1√
6

H3

H8
;

cr = 1, 7
4 , 5

4 for r = 1, 2, 3, respectively. The Lagrangian (5)
is the starting point of our analysis.

3 The spontaneous generation
of chromomagnetic fields

First, let us investigate the spontaneous vacuum magne-
tization in high-temperature SUc(3) gluodynamics. The
charged sector is described by the Lagrangian (5). For this
purpose we apply the effective Lagrangian method.

The effective Lagrangian of constant chromomagnetic
fields H3 and H8 at finite temperature can be written in
the form

Leff = L(1) + L(ring) + . . . , (6)

where the first term represents the one-loop contribution
of charged gluons:

L(1) = −gH3

2πβ

∞∑
l=−∞

∞∫
−∞

dp3

2π

∑
n,σ

ln[β2G−1
r=1(p3, H3, T )]
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−
√

3
2
λ+

gH8

2πβ

×
∞∑

l=−∞

∞∫
−∞

dp3

2π

∑
n,σ

ln[β2G−1
r=2(p3, H3, H8, T )]

−
√

3
2
λ−

gH8

2πβ
(7)

×
∞∑

l=−∞

∞∫
−∞

dp3

2π

∑
n,σ

ln[β2G−1
r=3(p3, H3, H8, T )].

Here r marks the index of the charged basis (4), Gr is the
corresponding propagator in the external fields H3 and H8.
The second term in (6) presents the contribution of daisy
or ring diagrams of the charged gluons,

L
(ring)
ch = −gH3

2πβ

×
∞∑

l=−∞

∞∫
−∞

dp3

2π

∑
n,σ

ln[1

+Gr=1(ε2n, H3, T )Πr=1(H3, T, n, σ)]

−
√

3
2
λ+

gH8

2πβ

×
∞∑

l=−∞

∞∫
−∞

dp3

2π

∑
n,σ

ln[1

+ Gr=2(ε2n, H3, H8, T )Πr=2(H3, H8, T, n, σ)]

−
√

3
2
λ−

gH8

2πβ

×
∞∑

l=−∞

∞∫
−∞

dp3

2π

∑
n,σ

ln[1 (8)

+ Gr=3(ε2n, H3, H8, T )Πr=3(H3, H8, T, n, σ)],

and of the neutral gluons,

L
(ring)
neut = − 1

2β

∞∑
l=−∞

∞∫
−∞

dp3

2π
ln[ω2

l + p2 + Π ′(H3, H8, T )]

− 1
2β

∞∑
l=−∞

∞∫
−∞

dp3

2π
ln[ω2

l + p2 + Π ′′(H3, H8, T )].

(9)

These expressions include the PO of charged gluons av-
eraged over physical states, which are also dependent on
H = H3, H8, the level number n = 0, 1, . . ., the spin pro-
jection σ = ±1, and the Debye masses of the neutral gluons
Q3

µ, Q8
µ,

Π ′(H, T ) = Π ′
00(k = 0, H, T ),

Π ′′(H, T ) = Π ′′
00(k = 0, H, T ),

respectively. The averaged values of charged gluon PO
taken in the state n = 0 and σ = +1 give the magnetic
masses of the transversal modes. The gauge dependence
of this mass needs some discussion. In fact, the PO is a
gauge dependent object. Its pole positions are gauge fixing
independent. This fact follows from the Nielsen identities
derived at finite temperature and zero field in [16]. We be-
lieve that the field presence does not change this property.
The tree-level spectrum of charged gluons in the fields is
also gauge fixing independent. Therefore we also believe,
although it is difficult to check explicitly, that the average
value of the PO in the ground state of this spectrum is gauge
fixing independent. In the used calculation procedure – a
simple daisy resummation – the described magnetic mass
is used as a given parameter in the effective Lagrangian
for temperature and magnetic field. In the minimum it
is also gauge fixing independent. Hence, we believe that
our calculations are gauge fixing independent. Of cause,
all the results are obviously dependent on the choice of the
directions a = 3 and a = 8 in the internal space. We shall
discuss in the last section the influence of gauge invariance
on the ground state properties following mainly to ideas
of Feynman [17]. The quantities Π ′(H, T ) and Π ′′(H, T )
are the zero-zero components of the corresponding neu-
tral gluon polarization operators calculated in the exter-
nal fields H = H3, H8 at finite temperature and taken at
zero momentum. The ring contribution to the Leff has to
be calculated when the vacuum magnetization at non-zero
temperature is investigated. These diagrams account for
long range correlations at finite temperature [9].

The detailed evaluations of the one-loop effective La-
grangian in finite-temperature SU(2) gluodynamics have
been carried out in [8,9]. Performing them in our case we
arrive at the following result for the high-temperature limit
of L(1):

L(1) = −H2
3

2
− 11

32
g2

π2 H2
3 ln

[
T

µ

]
+

1
3π

(gH3)
3
2

T

3π

− H2
8

2
− 11

16
g2

π2 H2
8 ln

[
T

µ

]

+
(
λ

3
2
+ + |λ−| 3

2

)(3
2

) 3
4

(gH8)
3
2

T

3π
(10)

+ i

[
(gH3)

3
2 +

(
λ

3
2
+ + |λ−| 3

2

)(3
2

) 3
4

(gH8)
3
2

]
T

2π
,

where T �√
gH3, 8 � µ; µ is the renormalization point.

The imaginary part in the expression (10) signals a vacuum
instability and must be considered carefully. Namely, as
will be shown below, the inclusion of ring diagrams, Lring,
leads to canceling of the imaginary parts so that the whole
expression Leff becomes real. To see this, let us consider
the contribution of the ring diagrams which correspond to
the unstable modes of the charged gluons:

L
(ring)
unstable = −gH3

2πβ
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×
∞∑

l=−∞

∞∫
−∞

dp3

2π
ln[1 + (ω2

l + p2
3 − gH3)−1Πr=1(H3, T )]

−
√

3
2
λ+

gH8

2πβ

×
∞∑

l=−∞

∞∫
−∞

dp3

2π
ln

1

+

(
ω2

l + p2
3 −

√
3
2
λ+gH8

)−1

Πr=2(H3, H8, T )


−
√

3
2
λ−

gH8

2πβ

×
∞∑

l=−∞

∞∫
−∞

dp3

2π
ln

1 (11)

+

(
ω2

l + p2
3 −

√
3
2
λ−gH8

)−1

Πr=3(H3, H8, T )

 ,

where ωl = 2πlT , l = 0,±1, . . . , are the Matsubara
frequencies. To obtain (11) one has merely to put n = 0
and σ = +1 in the expression for Lring

ch . An elementary
integration gives

L
(ring)
unstable = −gH3T

2π
[Πr=1(H3, T ) − gH3]

1
2

−
√

3
2
λ+

gH8T

2π

[
Πr=2(H3, H8, T ) −

√
3
2
λ+gH8

] 1
2

−
√

3
2
λ−

gH8T

2π

[
Πr=3(H3, H8, T ) −

√
3
2
λ−gH8

] 1
2

− i

[
(gH3)

3
2 +

(
λ

3
2
+ + |λ−| 3

2

)(3
2

) 3
4

(gH8)
3
2

]
T

2π
.

(12)

From (10) and (12) it is seen that the imaginary parts are
cancelled out in the total. The final effective Lagrangian
Leff is real if the relations

Πr=1(H3, T ) > gH3,

Πr=2(H3, H8, T ) >

√
3
2
λ+gH8

and

Πr=3(H3, H8, T ) >

√
3
2
λ−gH8

hold.
In one-loop order the neutral gluon contribution is

a trivial H-independent constant which can be omitted.

However, these fields are long range states and give an
H-dependent effective Lagrangian through the correlation
corrections (9) depending on the temperature and exter-
nal fields. Below, only the longitudinal neutral modes are
included because their Debye’s masses are non-zero. The
corresponding effective Lagrangian is easily calculated and
has the form [9]

L
(ring)
neut = −T 2

24
[Π ′(H3, H8, T ) + Π ′′(H3, H8, T )]

+
T

12π
[Π ′(H3, H8, T ) + Π ′′(H3, H8, T )]

3
2

− 1
32π2 [Π ′(H3, H8, T ) + Π ′′(H3, H8, T )]2

×
(

log
[
4πT [Π ′(H3, H8, T ) + Π ′′(H3, H8, T )]−

1
2

+
3
4

− γ

])
. (13)

Evaluating the Debye masses of the neutral gluons Q3
µ, Q8

µ

gives the following results (see for details [9]):

(m′
D)2 = Π ′

00(k = 0, H, T )

=
8
3
g2T 2 − g2T

π

×
[
(gH3)

1
2 +

(
λ

1
2
+ + |λ−| 1

2

)(3
2

) 1
4

(gH8)
1
2

]
(m′′

D)2 = Π ′′
00(k = 0, H, T ) (14)

= 2g2T 2 − g2T

π

(
λ

1
2
+ + |λ−| 1

2

)(3
2

) 1
4

(gH8)
1
2 .

Substituting the expressions (14) into L
(ring)
neut , we obtain

the correlation corrections due to the neutral gluons:

L
(ring)
neut =

g2T 3

24π

[
(gH3)

1
2 + 2

(
λ

1
2
+ + |λ−| 1

2

)(3
2

)1
4

(gH8)
1
2

]
,

(15)
where the H-independent terms were skipped. Thus,
the vacuum magnetization at high temperature T �√

gH3,8 will be investigated within the following
effective Lagrangian:

L(eff) = −H3

2
− H8

2
− 11

32
g2

π2 H2
3 ln

[
T

µ

]
− 11

16
g2

π2 H2
8 ln

[
T

µ

]

+

[
(gH3)

3
2 +

(
λ

3
2
+ + |λ−| 3

2

)(3
2

) 3
4

(gH8)
3
2

]
T

3π

− gH3T

2π
[Πr=1(H3, T ) − gH3]

1
2

−
√

3
2
λ+

gH8T

2π

[
Πr=2(H3, H8, T ) −

√
3
2
λ+gH8

] 1
2
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−
√

3
2
λ−

gH8T

2π

[
Πr=3(H3, H8, T ) −

√
3
2
λ−gH8

] 1
2

+
g2T 3

24π

[
(gH3)

1
2 + 2

(
λ

1
2
+ + |λ−| 1

2

)(3
2

) 1
4

(gH8)
1
2

]
+ O(g3). (16)

This expression includes the contributions of L(1) as well as
Lring

unstable and Lring
neut. Notice that the quantity Lring

unstable has
the order g

9
4 in coupling constant g, whereas the order of

Lring
neut is g

5
2 . In other words, the contribution of the neutral

gluons does not play an essential role in the generation of
external fields and this part can be dropped. This is natural
on general grounds because the neutral gluon field is stable
at the tree and the one-loop levels. So, one does not have
to expect any role of this sector in the field generation.
Thus, in this approximation, L(eff) is equal to the effective
Lagrangian (16) without the terms in the last line.

Our problem is divided into two separate parts: first,
one has to calculate the spontaneously generated fields in
the vacuum and, second, to compute Πr(H, T, n, σ), which
are the average values of the charged gluon PO taken in
the tree-level states.

To derive the strengths of the generated fields one has
to solve the set of stationary equations

∂L(eff)

∂H3
= 0,

∂L(eff)

∂H8
= 0.

There are three non-trivial solutions:

H3 = 0, H8 =
(

3
2

) 3
2 g3T 2

π2 , (17)

H3 =
1
4

(
1 +

1√
2

)2
g3T 2

π2 , H8 = 0 (18)

and

H3 = 0.2976
g3T 2

π2 ,

H8 = 0.9989
(

3
2

) 3
2 g3T 2

π2 . (19)

The terms of Leff that depend on the magnetic masses of the
transversal modes are not included in the expressions (17)–
(19), because their contributions are of higher order in g.
Note that the latter of these configurations corresponds to
the minimum of the EP and we, therefore, conclude that
both chromomagnetic fields have to arise spontaneously at
high temperature.

In determining the solutions (17)– (19), the logarithmic
terms ∼ ln

[
T
µ

]
were omitted as negligibly small. This ap-

proximation is appropriate for the region T ≥ Td, where Td

is the deconfinement phase transition temperature. How-
ever, in the limit T → ∞, the logarithmic terms become
large and should be accounted for. To analyze the asymp-
totic region the solutions of the above stationary equations
must be rewritten in terms of the effective coupling con-
stant:

g2
eff ≈

(
11

16π2 ln
[
T

µ

])−1

.

For this purpose one has merely to eliminate the tree-
level terms in the L(eff). It turns out that, at T � Td, the
field configuration

gH3 =
1
4

(
1 +

1√
2

)2
g4
effT 2

π2 , gH8 = 0 (20)

yields the global minimum of the EP. That is, only the
isotopic chromomagnetic field is generated at asymptoti-
cally high temperatures. If the temperature decreases, the
hypercharge H8 field appears below some temperature T0,
and in the deconfinement region T0 > T ≥ Td, where the
terms ∼ ln

[
T
µ

]
are small in comparison with the tree-level

ones, both fields are present.

4 Gluon polarization operator

The next question that must be answered is whether the
chromomagnetic fields H3 and H8 obtained in (19) are
stable. This complicated problem requires the explicit cal-
culation of the charged gluon polarization operator in the
external fields H3 and H8.

In one-loop order the PO is determined by the stan-
dard set of diagrams in Fig. 1, where double wavy lines
represent the Green function Gr µν(x, y) for the charged
gluons, dashed double lines correspond to the Green func-
tion D(x, y) for the charged ghost fields. Thin wavy and
thin dashed lines stand for the neutral gluon fields Q3,8

µ

and the neutral ghost fields C3,8, respectively. In the op-
erator form the above Green functions are given by the
expressions (in Feynman’s gauge)

Gr=1 µν(P ) = −[P 2 + 2igF3µν ]−1,

1) 2)

3) 4)

W
±

Q
3,8

W
±

C
+

C3,8

C
−

C3,8

Fig. 1. Polarization operator of charged gluons in the one-loop
approximation
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Gr=2,3 µν(P ) = −[P 2 +
√

6iλ±gF8µν ]−1,

D(P ) = − 1
P 2 .

To calculate the PO we make use of the proper time
representation and the Schwinger operator formalism [14].
The PO of charged gluons in a chromomagnetic field at
non-zero temperature can be written as

Πr
µν =

g2

β
cr

∑
k4

∫
d3k

(2π)3
Πr

µν(k, P ), r = 1, 2, 3, (21)

where

Πr
µν(k, P )

= k−2
{

Γµα,ρGr αβ(P − k)Γνβ,ρ + (P − k)µD(P − k)kν

+ kµD(P − k)(P − k)ν

+ k2
[
Gr µν(P − k) − 2Gr νµ(P − k)

+δµνGr ρρ(P − k)
]}

,

Γµα,ρ = δµα(2P − k)ρ + δαρ(2k − P )µ + δµρ(P + k)α;

β = 1
T , k4 = 2πl

β , l = 0,±1,±2, . . ., Pµ = i∂µ + gB3µ for

r = 1 and Pµ = i∂µ+
√

3
2λ±gB8µ for r = 2, 3, respectively,

the constant cr is defined above. We restrict our consid-
eration to the case of the high-temperature limit. In (21)
this limit corresponds to the l = 0 term in the sum over
k4 [12]. To evaluate the expression for the PO we used the
Schwinger proper-time method modified for the case of the
high temperature (see [10] for details). Thus, the average
over the physical states values for the gluon PO and the
Debye mass squared of charged gluons can be written as

〈n, σ | Πr
ij | n, σ〉 = Πr(P4 = 0, hr, T, n, σ)

=
g2

8π3/2β
cr

1∫
0

du√
u

∞∫
0

dx√
x

[grhr∆]−1/2

× exp
{

−(2n + 1)[ρ − x(1 − u)] − 2y(1 − u)
}

×Πr(x, u), (22)

Πr
44(P4 = 0, hr, T, n)

=
g2

8π3/2β
cr

1∫
0

du√
u

∞∫
0

dx√
x

[grhr∆]−1/2

× exp
{

−(2n + 1)[ρ − x(1 − u)]
}

Π̃r(x, u), (23)

where x = grhrus, y = xσ, σ = ±1, hr=1 = H3, hr=2 =

λ+H8, hr=3 = λ−H8, gr=1 = g, gr=2,3 =
√

3
2g,

tanh ρ =
(1 − u) sinhx

(1 − u) cosh x + u sinh x
x

,

∆ = (1 − u)2 + 2u(1 − u)
sinh 2x

2x
+ u2 sinh2 x

x2 .

The explicit expressions of the functions Πr(x, u) and
Π̃r(x, u) are complicated and have in general the same form
as in the case of SU(2) gluodynamics considered in [10].
However, for our analysis we need in the asymptotic ex-
pansions of Πr(x, u) and Π̃r(x, u) for the values of the
parameters u ∼ 1, and x � 1 corresponding to the high-
temperature limit, gH

T 2 � 1 [10]. Without loss of generality,
the calculations can be carried out in the reference frame
P3 = 0. Performing the integrations we obtain

Πr=1(P4 = 0, P3 = 0, H3, T, n, σ = +1)

=
g2

4π

√
gH3T ((4n + 11.44) + i(10n + 7)),

Πr=2,3(P4 = 0, P3 = 0, H3, H8, T, n, σ = +1)

=
3g2

8π
cr=2,3

(
3
2

) 3
4 √

λ±
√

gH8

×T ((4n + 11.44) + i(10n + 7)),

Πr=1(P4 = 0, P3 = 0, H3, T, n, σ = −1)

=
g2

4π

√
gH3

×T ((4n + 15.62) + i(2n + 9.69)), (24)

Πr=2,3(P4 = 0, P3 = 0, H3, H8, T, n, σ = −1)

=
3g2

8π
cr=2,3

(
3
2

) 3
4 √

λ±
√

gH8

×T ((4n + 15.62) + i(2n + 9.69)),

Πr=1
44 (P4 = 0, P3 = 0, H3, T, n)

=
g2T 2

2
+

g2

4π

√
gH3T ((4n + 6) + i(6n + 9)),

Πr=2,3
44 (P4 = 0, P3 = 0, H3, H8, T, n)

= g2T 2 +
3g2

8π
cr=2,3

(
3
2

) 3
4 √

λ±
√

gH8

×T ((4n + 6) + i(6n + 9)).

The sign “+” in the expressions (24) has to be taken
for r = 2 and the sign “-” for r = 3 (r is the index
of the charged basis (4)). From (19) and (24) it is seen
that the real parts of the PO are positive in the ground
and excited states. The imaginary parts in the expres-
sions Π(P4 = 0, P3 = 0, H, T, n, σ) and Π44 occur be-
cause of a non-analyticity of a number of terms in the
integrands in the RHS of (22) and (23) for large x → ∞.
The integration contour ensuring the convergence of the
x-integrations results in the imaginary parts in the expres-
sions (24). The imaginary part describes the decay of the
state owing to transitions to the states with lower ener-
gies. The first term in the expression Π44 is calculated
by performing summation over the discrete frequencies k4
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and cannot be obtained from (23). The second one gives
the next-to-leading term and is calculated by using the
high-temperature static limit.

The imaginary part of Π44 for n = 0 describes the Lan-
dau damping of the ground state plasmon quasi-particles.
We note that the imaginary parts entering the Π44 and
the Π(P4 = 0, P3 = 0, H, T, n = 0, σ = +1) are of the
same order of magnitude. Since a spin interaction does
not affect the former correction, and the tachyonic state
in the field is excited just due to the spin interaction of
the charged gluons, one has to conclude that the non-zero
imaginary part of the latter function does not correspond
to the instability of the chromomagnetic fields and also de-
scribes the usual damping of states at finite temperature.
To verify whether or not the radiation corrections stabilize
the spectrum at high temperature we calculate the gluon
effective mass squared determined by the real part of the
Π(P4 = 0, P3 = 0, H, T, n = 0, σ = +1) at one-loop level.
If this function is positive, the spectrum, and hence the
vacuum, is stable.

5 Discussion

We have investigated the QCD restored phase. As we de-
termined from the EP, accounting for the one-loop plus
daisy diagrams, the vacuum with non-zero Abelian chro-
momagnetic fields H3 and H8 is favorable energetically.
It is stable due to the magnetic masses of the charged
gluons which have to be included into our consideration
when the value of the background fields is estimated. These
masses are computed from the gluon one-loop polariza-
tion operator in the external fields. As it occurred, the
charged gluon spectrum in the fields accounting for the
tree plus the one-loop corrections is stable in a wide inter-
val of temperature above the Td. It is important to notice
that in the presence of a field the gluon magnetic mass
m2

magn. ∼ g2(gH)1/2T is generated in one-loop order, in
contrast to what happens in the case of the trivial vacuum
where the mass m2

magn. ∼ g4T 2 is a non-perturbative ef-
fect [12, 15, 18]. Since the magnetic vacuum field is of the
order (gH)1/2 ∼ g2T , the charged gluon magnetic mass
squared is estimated as ∼ g4T 2. That is, the order of the
magnetic mass is the same in both calculation methods.
Clearly the former case is also non-perturbative because
the field is taken into account exactly through the Green
functions. If one accounts for the magnetic field perturba-
tively, a zero result follows [19]. Of course, the stabilization
of the gluon spectrum by radiation corrections in the fields
is an interesting fact which could not be expected before-
hand. It was observed already in SU(2) gluodynamics [20]
and here for the SU(3) gauge group. One may believe that
this is the case for other non-Abelian gauge groups and
therefore the stabilization is a reflection of the intrinsic
field dynamics. Note here that another mechanism of field
stabilization was discussed in [7], which takes into account
the generation of the electrostatic gauge field potential
(A0 condensate). However this picture was not investi-
gated consistently since the common generation of the A0

and magnetic fields has not been considered. Some aspects
of the influence of the A0 condensate on the magnetic field
have been investigated recently in one-loop order in [11].

Consider in more detail the values of the gluon mag-
netic mass determined in different calculations and com-
pare these with the value of the vacuum magnetic field.
In a recent paper [11], in SU(2) gluodynamics to stabi-
lize the one-loop effective potential the gluon magnetic
mass mmagn. of order ∼ cg2T was introduced on heuris-
tic grounds. Then, in particular, it was found that for
mmagn. ≥ 0.388g2T the effective potential has a global
minimum at H = 0. Hence it has been concluded that a suf-
ficiently heavy magnetic mass leads to a trivial vacuum in
the deconfinement phase. This critical value is close to the
magnetic masses determined in a number of lattice simula-
tions: 0.505 g2T [21], 0.360 g2T [22]. It is interesting to com-
pare our result for the magnetic mass identified with the
effective mass of gluon M2

eff.(H) = 11, 44 g2

4π (gH)1/2T −gH

and the field (gH)1/2 = g2

2π T for the SU(2) sector. A simple
estimate gives Meff. = 0.345g2T which is close to the value
derived by Philipsen. For this value we observed the sta-
bilization of the magnetized vacuum. On the other hand,
this value is insufficient to have a zero vacuum field, if
the approach of the paper [11] is adopted. Moreover, if
one takes into account the structure of the magnetic mass,
m2

magn. ∼ √
gHg2T , there is no possibility to have zero

for the generated field. So we believe that the magnetized
vacuum has to be considered not as an artificial mathe-
matical fact.

The gauge dependence of the gluon magnetic mass was
discussed in Sect. 3. Now we would like to note some pos-
sible consequences of the gauge invariance of the ground
state. As was mentioned in Sect. 3, this was investigated
qualitatively by Feynman [17] for two-plus-one dimension
gluodynamics and actually has a general character. Clearly,
homogeneous magnetic fields break gauge invariance ex-
plicitly. Therefore they could not be considered as the true
ground state. In fact, the solution derived in the present
paper corresponds to some domain of the gauge invariant
vacuum. The size of domains and their orientation could be
determined by using the requirement of gauge invariance
of the ground state at finite temperature. In [17] the zero
temperature case is considered. To find the vacuum at finite
temperature one also has to take into account the entropy
of the states created. Most probably, a qualitative picture
looks like a condensate of tubes with magnetic fluxes. Its
detailed description needs a separate investigation.

Another important point which we are going to dis-
cuss is the influence of higher loop contributions. First we
note that the one-loop plus daisy graphs account for the
long distance contributions and give the main effect. This
was realized already in the related problem on the elec-
troweak phase transition in strong magnetic fields [23,24].
The results obtained within this EP are in a good agree-
ment with the one found in the non-perturbative approach
in [25, 26] (see also the recent survey [27]). The most im-
portant feature of this approximation is that the EP is real
at sufficiently high temperatures, and therefore the spon-
taneously generated magnetic fields are stable. We believe
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that the higher loop corrections will not change qualita-
tively the results obtained and the results on the stable
magnetize vacuum survive. To check our results the resum-
mations on the super daisy level have to be carried out.
That is a problem for the future.

It is interesting to compare our results with those ob-
tained in lattice calculations by Cea and Cosmai [28, 29].
In the former paper the creation of the color Abelian chro-
momagnetic field was investigated by means of the lattice
Schrödinger functional. It was observed that at T = 0
the applied external chromomagnetic field is completely
screened by the vacuum. At finite temperature the applied
field is supported by the temperature and increased with
the growth of temperature. That is in correspondence with
our calculations. In the latter paper the influence of the ex-
ternal fields on the deconfinement phase transition has been
investigated and an intimate connection between Abelian
chromomagnetic field and color confinement was observed.
This interesting result is not directly related with the one
obtained in the present paper, because we do not consider
the field as an external one. From our results it follows that
in the deconfinement phase the Abelian chromomagnetic
fields have to be present. So, we have to answer the ques-
tion how the spontaneous vacuum magnetization affects
the temperature of the phase transition.
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